permutation table - definition. What is permutation table
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Random Permutation Statistics; Permutation statistic; Permutation statistics; Random permutation statistic

Cyclic permutation         
  • Matrix]] of <math>\pi</math>
TYPE OF (MATHEMATICAL) PERMUTATION WITH NO FIXED ELEMENT
Transposition (mathematics); Circular permutation; Adjacent transposition; Circular Permutation; Anticyclic permutation
In mathematics, and in particular in group theory, a cyclic permutation (or cycle) is a permutation of the elements of some set X which maps the elements of some subset S of X to each other in a cyclic fashion, while fixing (that is, mapping to themselves) all other elements of X. If S has k elements, the cycle is called a k-cycle.
Table Alphabeticall         
  • The title page of the third edition of ''Table Alphabeticall''.
ENGLISH DICTIONARY PUBLISHED IN 1604
A Table Alphabeticall; Table alphabeticall; Table Alphabetical
A Table Alphabeticall is the abbreviated title of the first monolingual dictionary in the English language, created by Robert Cawdrey and first published in London in 1604.
Table (database)         
SET OF DATA ELEMENTS ARRANGED IN ROWS AND COLUMNS AS PART OF A DATABASE
Database table; Database Tables; Cell (database); Table (SQL); SQL table; Base table
A table is a collection of related data held in a table format within a database. It consists of columns and rows.

ويكيبيديا

Random permutation statistics

The statistics of random permutations, such as the cycle structure of a random permutation are of fundamental importance in the analysis of algorithms, especially of sorting algorithms, which operate on random permutations. Suppose, for example, that we are using quickselect (a cousin of quicksort) to select a random element of a random permutation. Quickselect will perform a partial sort on the array, as it partitions the array according to the pivot. Hence a permutation will be less disordered after quickselect has been performed. The amount of disorder that remains may be analysed with generating functions. These generating functions depend in a fundamental way on the generating functions of random permutation statistics. Hence it is of vital importance to compute these generating functions.

The article on random permutations contains an introduction to random permutations.